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Enhanced winning in a competing population by random participation
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We study a version of the minority game in which one agent is allowed to join the game in a random fashion.
It is shown that in the crowded regime, i.e., for small values of the memoryrsiné the agents in the
population, the agent performs significantly well if she decides to participate the game randomly with a
probability g and she records the performance of her strategies only in the turns that she participates. The
information, characterized by a quantity called the inefficiency, embedded in the agent’s strategies performance
turns out to be very different from that of the other agents. Detailed numerical studies reveal a relationship
between the success rate of the agent and the inefficiency. The relationship can be understood analytically in
terms of the dynamics in which the various possible histories are being visited as the game proceeds. For a
finite fraction of randomly participating agents up to 60% of the population, it is found that the winning edge
of these agents persists.
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I. INTRODUCTION and lead to a better performance of population as a whole

The self-organization of an evolving population consist-2nd (i) how an individual agent can possibly outperform
ing of agents competing for limited resource is an importanPther @gents without giving the agent too much extra capa-
problem in the science of complex systems and has potenti lity. Thg former IS c!early qruual frqm tf’1e point of view of
applications in areas such as economics, biological, engi2 90Verning body in improving a society's performance, and

neering, and social scienc _The bar-attendance prob- the latter is. important from the viewpoint of the agents.
lem prgoposed by Al’thUI[3e4:?2]f0r example constitutgs a Much attention on the MG have been focused on the first

typical setting of such system in which a population of guestion, and several models with a suppressédve been

agents decide whether to go to a bar with limited seatinﬂ’r()posed' The thermal model of M@2], for example, al-

capacity for pleasure. The agents are informed of the atte ows the agents to use strategies other than the best-scoring

dance in past weeks, and hence the agents share comm@R€ With a probability taking on the form of a Boltzmann
information, interact through their actions, and learn from@ctor. It was found thair can be suppressed significantly in

past experience. The problem can be simplified by considef® crowded phase, as the probabilistic usage of strategies
ing binary games, either in the form of the minority gameeruces t.he crowd effeqtL.3). A_It(_ernatlvely, the use of a
(MG) [5] or in a binary-agent-resource garf@. For low persopal informatiorj14] for dgmsmns, e.g., based on each
resource level in which there are more losers than winner&@9€nt's record of her own actions, instead of a globally an-

the minority game proposed by Challet and Zh&Bigrepre- nounced information provides another mechanism for sup-
sents a simple, yet nontrivial, model of competing populaPT€SSing the crowd effect. In the evolutionary minority game
tions. proposed by the present auth§t$,16, the agents can adapt

The MG comprises an odd numbirof agents. At each their behavior by adjusting their probability of following a
time step, the agents independently decide between optiongrategy common to all agents. It was shown that the agents
and option 1. The winners are those who have chosen th¥ould self-organize in such a way thatis small. Recently,
minority side. The agents learn and adapt by evaluating theySi-Aho et al. [17] proposed a genetic algorithm for the
performance of their strategies, which map the global inforVvolution of the agents and found that the fluctuations are
mation, i.e., records of the most recentvinning options, to reduced. A common feature of these models is that the way
an action. A characteristic quantity in MG is the standardthrough which the agents adapt to past performance is sig-
deviation o of the number of agents making a particular nificantly altered, as compared with the MG.
choice. This quantity reflects the performance of the popula- In the present work, we focus on the question of how
tion as a whole in that a smatt implies on average more individual agents may outperform their competitors. Our
winners per turn, and hence a higher success rate per turn p@odel is motivated by realistic behavior of ordinary people.
agent. In MG,o exhibits a nonmonotonic dependence on theTaking the situation of an agent buying or selling stocks, for
memory sizem of the agent$7—-9. Whenm s small, there is example. He may not enter the market to sell or buy stocks
much overlap between the agents’ strategies. This crowd ekvery day. In addition, people tend to learn from their
fect [6,10,17 leads to a larger, implying the number of hands-on experience, i.e., they tend to learn in the turns that
losers is high. This is the crowded or efficient phase of MG they actually participate. When they trade, they decide based
In the inefficient phase wher is large, o is moderately on updated information. Based on these common observa-
small and the agents perform better than deciding randomlyions, we propose a model in which an agent or a fraction of

Two important questions in MG and other multi-agent agents participate in the MG with a probabilgyer turn and
based models are théf) how one can possibly suppress these agents register the performance of their strategiys
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in the turns that they participate. Strikingly, it is found that 051
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The plan Of the paper iS as fO”OWS. In SeC. ”, we intrO- 0.36 — averaged success rate for the random agent
duce our model. Results of extensive numerical studies for e rate for other agents
one randomly participating agent with=0.5 in a population 0.31 . @ Other agents, ‘
are presented in Sec. Ill. To explore the underlying physics ! 8 o7 ° 1
of the enhanced success rate of the agent, we study the st )
tistics of the bit strings observed by the agent. Results on the %5 +F oy e '
information observed, which is described by a quantity & 045 - 8 4\?,@% .
called the inefficiency, are presented in Sec. IV. It is found § 04 | Q 4 |
that a nontrivial relationship exists between the success ratg 0354 E e —_ averaged sucosss rateor the random agert
of the agent in a run witla of that run. A theoretical analysis 3 ' © The random agent
on the observed relationship is also given in Sec. IV. In Sec. 03 e oo e forother agerts 1
V, we present numerical results for# 0.5 and generalize 0.25 s . . s "

our discussion on the relationship between the success rai
and e to arbitrary values of]. Results for many RPAs in a
population are presented in Sec. VI, together with results FIG. 1. The success rat&sof the randomly participating agent
comparing the performance of RPAs and random agents whand the othefN-1) agents as a function ofi for N=101,9=0.5
participate and decide randomly. It is found that the RPAsand for(a) s=2 and(b) s=3. For each value ain, the data corre-

with their scheme of assessing their strategies, consistentﬁpond to 50 independent realizations. The lines represent an average
perform better than random agents. Section VIl gives a sunRVer 50 runs. Fom<m,, an RPA performs significantly better than
mary of the results. the other agents.

m

present, the winning outcome is decided randomly.
The RPAs differ from the other agents in the following
The basic MG[5] comprisesN agents competing to be in way. Besides joining the game with probability they re-
a minority group at each time step. The only informationward the virtual points to the strategies that they hold only in
available to the agents is the history. The history is a bithe turns that they participate. For the turns that a RPA de-
string of lengthm recording the minority option for the most cides not to play, no virtual points are awarded to her strat-
recentm time steps. There are a total of possible history egies, regardless of the outcome. These RPAs, therefore,
bit strings. At the beginning of the game, each agent picks carry the typical features of ordinary people as described in
strategies, with repetition allowed. They make their decisionshe preceding section. Fag=1 or Ngpa=0, the present
based on their strategies. A strategy is a look up table wWith 2model reduces to the MG.
entries giving the predictions for all possible history bit
strings. Since each entry can either be 0 or 1, the whole
strategy pool contains?2 strategies. Adaptation is built in by
allowing the agents to accumulate a mevirtual) point for
each of her strategies as the game proceeds, with initial merit We have performed extensive numerical simulations on
point set to zero for all strategies. After each turn, ¢vie our model. First, we study the case of one RPA in a popula-
tual) point is assigned to the strategies that would have pretion with q=0.5 in which the RPA is participating randomly,
dicted the winning minority option. At each turn, the agente.g., deciding by tossing an unbiased coin. We consider sys-
follows the prediction of her best-scoring strategy. A randomtems ofN=101 and 301 agents, with each agent holding
choice will be made for tied strategies. =2, 3 strategies. The quantity of interest is the success rate,
In the present model, we consider a populationNof  which is the winning probability of the agents. For the RPA,
agents in which there are a numbeégp, of randomly par-  the success rafe is the ratio of the number of winning turns
ticipating agents. These agents are allowed to join the gam® the number of turns she has actually participated.
with a probabilityq, i.e., a RPA has a probability of joining Figure 1 shows the success rate of the RPA, together with
the game in each turn and a probability ofd.ef staying out  the success rate of the othéi—1) agents as a function of
of the game in a turn. The othéN—-Ngp,) agents, as in the the memory sizan for a system withN=101 agents fois
MG, participate every turn. For all agents, they decide in the=2 [Fig. 1(a)] ands=3 [Fig. 1(b)]. For each value oM, 50
same way as in the MG when they participate, i.e., theyindependent runs with different initial random distributions
decide based on the best-scoring strategy that they hold af strategies among the agents are carried out. The lines rep-
the moment of decision and follow the prediction of theresent an average over the 50 runs. The most striking feature
strategy for the given most recemtwinning options. In the of the results is that in the crowded phase wharis small,
case that the two possible options are chosen by the same., 2X2M™<Ns the RPA performsignificantly betteithan
number of agents, a case that may occur when RPAs aitbe agents who participate every turn. The spread of results

Il. THE MODEL

IIl. RESULTS FOR ONE RANDOMLY PARTICIPATING
AGENT: q=0.5
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0.5 T T T T the same history bit string, the virtual points awarded now
| lead to a crowd behavidi 0] with a crowd of agents decid-
~ ing on the same outcome as in the last occurrence. However,
for smallm, this crowd tends to be too big to win, due to the
small strategy space and hence substantial overlap of strate-
gies among agents. Hence, the outcome is opposite to that in
the last occurrence of the same history bit string. Virtual
points are then awarded. For the next occurrence of the same
bit string, the situation is similar to that of the first occur-
rence. Since there are a total of" Dossible history bit
strings, it takes on average<2™ time steps to sample all the
history bit strings twice, thus leading to the doubly periodic
features. In graph-theoretical language, this is related to the
path in the de Bruijn graph formed by the possible history bit
strings. A crowd-anticrowd theorjd 0,17 can be formulated
to explain the large standard deviationin the number of

FIG. 2. The success raR of the randomly participating agent agents making a particular decision over time for smaih
as a function oin for three different systemg=0.5,N=101 with  terms of the crowd effect. A large fluctuation implies fewer
s=2 and forN=301 with s=2,3. Each data point represents an winners per turn and hence a low success rate. The success
average over 50 independent realizations. rates shown in Fig. 1 for the other agents are strongly corre-

lated with 0. For the RPA, the virtual merit points of her
strategies are different from that of the other agents, as she

in different runs is small and hence the enhanced success rd@wvards the strategies only in the turns she participates.
of the RPA is an intrinsic feature. For higher valueswwfn ~ Therefore, the RPA does not fully adapt to the information
the inefficient phase of the MG, the success rate of the RPAreated by the other agents, and hence does not become part
iS found to Vary much from run to run, W|th an average Of the CI’OWd. Th|S giVes the RPA the ab|l|ty to aVOid over
success rate lower than that of the other agents. The crosgdaptation in the crowded phase and an winning edge over
over from one behavior to another occurs at a Vaml:ﬁ the other agentS. We have checked that if the random agent
which takes on a value close to the crossover from th&eeps record of the performance of her strategies for the
crowded phase to the inefficient phase in the basic MG. Fofrns that she does not enter, the strategies still adapt to the
very high values ofn, the success rates of the RPA and theglobal history and no enhanced success rate results, even she
rest of the population become identical. Similar behavior isParticipates randomly.
also found fors=3. Comparing Figs. (& and Xb), the en-
hanced success rate of the RPA over the other agents in the IV. INEFFICIENCY AND SUCCESS RATE
range of smalm is more pronounced for higher valuesf
as the population does not perform collectively well in the
basic MG ass increases for smalh. To explore deeper into the underlying physics for the en-

To test whether the dependence of success rate of the RAranced success rate of the RPA, we study the statistics of the
on m is intrinsic, we carried out numerical simulation for a bit strings in the series consisting of the outcomes for the
system withN=301 fors=2,3. Thesuccess rate of a RPA, turns that the RPA has participated. This series of bit strings
averaged over 50 runs, is shown in Fig. 2, together with th€orresponds to the one with which the strategies of the RPA
results forN=101 ands=2 for comparison. In general, the are assessed for their performance. To quantify our discus-
average success rate depends only weaklyndor m<m,.  sion, we focus on the behavior in the range of smakhnd
Note that the value ofin, depends on botN ands. Around  look at the probability of a winning outcome of 1 following
m,, the RPAs success rate drops and reaches a minimui given bit string ofm bits. We define the inefficiency
before increasing witlm again form>m,, [8,19,2Q as follows:

Qualitatively, the enhanced winning of a RPA comes from om
a successful escape in overadapting to the history created by 1 .
action of the other agents. In the MG, adaptation is achieved &= z_mgl [P(L]i(m) - 1/2, (1)
by assessing the performance of each strategy as the game =
proceeds. In the crowded phase, it has been shown that thehere the sum is over all™ possible m-bit strings and
history bit string exhibits features with a periodicity of length P(1]i(m)) is the conditional probability that a givem-bit
2X 2™ [18]. For small values ofn, agents in the population string labeled byi is followed by an outcome 1 in a long
adapt too effectively to the history. When a particular historyseries of the RPA bit strings in a particular realization of the
bit string occurs for the first timéor has occurred an even model[21]. The inefficiencye measures the information left
number of times in previous turpsthe agents basically de- in the history bit strings that the RPA uses to assess her
cide randomly. The outcome then leads to virtual points bestrategies. Note that for the MG in the crowded phase)
ing awarded to those strategies which predicted the outcon{d], indicating that there is no information left in the history
for that particular history bit string. In the next occurrence ofbit strings.
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A. Numerical results
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FIG. 3. The probability density of inefficiency for N=101, 0.46 0 0.005 0.01 0.015 0.02
m=2,s=2, andq=0.5. The inset shows the probability distribution €
of ¢ for m=4. Each distribution is obtained from the results of
10 000 independent runs. FIG. 4. The success rafe againste in the bit string which the

RPA uses to assess the performance of her strategy. The parameters
areN=101,s=2, m=2, andg=0.5 for the RPA. There are 10 000
. . data points on the plot corresponding to 10 000 independent runs.
. Each realizatior(run) .Of t.he model gives one value et Note I;)hat the data ;E)oints lead Ft)o the gmergence of a IFi)ne. The inset
Figure 3 shows the d'St”b,““OF‘ of th(_a .v_alues .o_fpver shows the results fom=4 in which the RPA holds two identical
10 000 independent runs with different initial conditions for strategies.
m=2 andm=4 (inse) andq=0.5. Strikingly,e # 0 in general
for the bit strings specific to the RPA. The distribution shows
a peak at finites with the most probable value efincreases at a turnt that belongs td%, ., (t5,,). Double-periodicity im-
with m. We have checked that the inefficiency of the bit plies P(ﬂtéfver):% and P(7]t“,)=1-7. To proceed, we note
string in a run used by the other agents takes on a value vethat the straight line in main panel of Fig. 4 consists of about
close to zero. 600 data points out of a total of 10 000 runs. This amounts to
From Figs. 1 and 3, there is a spread of success rate fgf fraction of 1/(22")=1/16 form=2, which is the fraction of
different runs that is associated with a Spread in the values qgents h0|d|ng two identical Strategies in a popu|ation.
e. For each run of our model, there is a successiRe@®d a  Therefore, the runs on the straight line corresponds to the
value ofe. It is therefore interesting to explore the correla- cases in which the RPA picks two identical strategies, i.e.,
tion, if any, betweerR ande in a run. Figure 4 shows a plot effectively one strategy. This is further confirmed numeri-
of the success rate against the inefficiency for a system cally in the inset of Fig. 4 in a game oh=4 in which the
with N=101, s=2, m=2, and a participating probability RPA is restricted to have two identical strategies. We further
=0.5 for the RPA. Each data point on the plot represents theote that it is the RPA that generates the inefficieacyhis
success rate and the value of inefficiency in a run. There ari related to the fact that, unlike an outsider who observes but
10 000 data points on the plot, corresponding to 10 000 inhot participates, an agent's action affects the outcome, and
dependent runs. From the scattered data points, thefence her own success rate. This is the agent's “market im-
emergesa straight line consisting of a fraction ef0.06 of ~ Pact.” Consider, for example, the case that the other1)
the total number of rung22]. For these runs, the success rate@gents are equally split between the two options. The out-
R is related to the inefficiency by R=0.5-¢. The inset of Come will always be the opposite of that of the remaining

Fig. 4 shows the results fon=4 in which the RPA holds two @gent. For a RPA, however, this market impact effect is im-
e FOrtetfy, the difference

identical strategies, the implication of which will be dis- Portant only for the tumnse tg,, e
cussed in the following section. in the number of agents taking the two options is so large for
a single RPA to affect the outcome.
Consider a RPA with two identical strategies. If the agent
decides to enter the game in a turati ., there is a small
, ) probability P in these turns that the other agents are evenly
The emergence of the relationship between the succegfyvided between option 0 and option 1. In this case, the
rate and the inefficiency can be understood by invoking theyutcome is determined by the strategy of the RPA. If her
doubly periodic feature in MG, as described in the last secstrategy predicts option, the outcome will bé1-7) and the
tion. Let tg,., (t5g) be a set consisting of the turns in a agent will definitely lose. In the next occurrence of the his-
history series that a particular histogy occurred an even tory u, the outcome must be due to the doubly periodic
(odd) number of times from the beginning of the game justfeature. As a result, the RPA will definitely win if she decides
before the moment of decision with histomy Let P(rt5,.)  to participate. The success rate of the agent is then given by

[P(At4,)] be the probability that the outcome is(7=0,1)  [23]

B. Theoretical analysis
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) FIG. 6. The success rai againste with N=101,s=2, andm
FIG. 5. The average success rate of the RPA as a functiam of -2 for five different values ofj=0.3,0.4,0.5,0.6,0.7. The RPA

for a system with N=101, s=2 for different values ofq  noids two identical strategies. For each valuegoflabeled by a
=0.3,0.5,0.8,1. Each data point is an average over 50 independegimpo), 500 independent runs are carried out. The solid line rep-
runs. The lines are guide to eye. resents the relationshiR=0.5-«.

o 21 1-¢g for a system withN=101, s=2 for different values of par-
R=(1-P-qP) X 1/2+PXx0+qPx1= 2 2 P, ticipation probabilityq (g=0.3,0.5,0.8. For q=1, the suc-
o) cess rate of the RPA is the same as that of the other agents
and the results are identical to that of the MG. It is noted that
where the last two terms in the first line correspond to thefor small values ofm, i.e., in the crowded phase, the en-
two cases discussed above, and the fa@erP—qgP) is the  hanced success rates fp#= 1 take on similar values, all of
probability of occurrence of cases other than those include@hich are significantly higher than that of the other agents
in the last two terms. (reasonably represented by the 1 result3. For values ofn
The inefficiencye can be calculated using E¢l) in a in the inefficient phase of the MG, a higher participation
similar manner. There is a probabiliin the turns that the probability gives a higher success rate. However the success
RPA participates that the RPA must lose ferts, ., with an  rate is still lower than that of the other agents.
outcome(1-7). If the agent participates in the next occur-  The argument in the preceding section can be readily gen-
rence of that particular history, the outcome will ber.  eralized to arbitrary values @f+# 1. In this case, the success
Consequently, the probability for the RPA to observe an outfate of a RPA holding repeated strategies is given by
comeris 1
1 1-q R(Q):E_S(Q), (6)
P.=(1-P-gP) X 1/2+P X 0+qP X 1:5_TP’
i.e., taking on the same form as E). The inefficiency
3) £(q), similar to Eq.(4), is given by
where 7 takes on either 0 or 1. It follows from E@l) that 1-

r . £(0) =~ P(@), )
=23 [Pt - 1/2 = =P, (4) | | |
2" 2 whereP(q)=T.(q)/T with T,(q) being the number of turns in

a run of T turns (T>1) that the other(N-1) agents are
evenly split between the two decisioaadthe RPA partici-
1 pates. The result suggests that for different valueg afplot
R= 2 €, ©) of the success rate againsts(q) will have data points clus-
tered on a straight line with slope —1. This is indeed the case
as observed numerically for runs in which the RPA holdsas shown for data obtained with five different valuesyoh
two identical strategies. Fig. 6. For each value af, 500 independent runs are carried
out, and there are 2500 data points on the plot. The data
clearly exhibit the behavior suggested by E®).
It is interesting to explore the distribution of inefficiency
Figure 5 shows the results of the success rate, averagédr values ofq away fromq=1. Figure 7 shows the prob-
over 50 runs for each data point, of a RPA as a functiomof ability density of inefficiency for four different values of

Combining Egs(2) and (4), we have

V. ONE RANDOMLY PARTICIPATING AGENT: q#0.5
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FIG. 8. The average success rate as a function of the ratio
FIG. 7. The probability density of inefficienayfor the RPAiIn  Nrea/N Of RPAs in the population wittN=101,s=2, m=2, and

a system withN=101, s=2, m=2 for four different values ofj g=0.5. A pair of lines show the success rate of the RRdeshed

=0.3,0.5,0.7,0.9. Other parameters &e101, m=4, ands=2. line) and the other agentsolid lineg. For comparison, another pair

For each value of, the distribution is obtained from 1000 indepen- ©Of lines show the success rate of random agémts-dashed line
dent runs. and the other agentsolid line with symbol$ as a function of the

ratio Nyangon/ N. Each data point represents an average over 50
independent realizations.
(9=0.3,0.5,0.7,0.9in a system withN=101, m=4, ands
=2. For each value of,, the distribution is obtained from agents in a turn are the other agents. Thus, the system is still
1000 runs. It should be pointed out that the distribution forinfluenced by the actions of the other agents.
the basic MG(q=1) is sharply peaked near=0. As g takes
on values gradually away from unity, the distribution of in-
efficiency gradually spreads wider with the most probable

value of the inefficiency increases as the deviatiog &bm We considered the success rate of a number of randomly
Unity increases. Therefore, the enhanced success rate is rt|C|pat|ng agents in a popu|ati0n Competing for limited
companied by a nonvanishing inefficiency in the range ofresource. The RPAs participate with a probabititgnd they
smallm. assess the performance of their strategies only in the turns
that they participate. Extensive numerical calculations were
carried out. For one RPA in a population, it was found the
RPA has a higher success rate than the other agents in the
It is important to investigate whether the enhanced sucerowded phase. Rewarding the strategies only in the turns of
cess rate of a RPA persists when more RPAs are present inparticipation avoids the RPA from overadaptation to the out-
population. Figure 8 shows the averaged success rate ascames produced by the actions of the other agents. The hid-
function of the fraction Ngpa/N, of RPAs in a population den information in the bit strings that a RPA used to reward
with N=101,s=2, m=2, andq=0.5. The dashed line gives her strategies was analyzed in terms of the inefficiendy
the success rate of the RPAs and the solid line gives thbasic MG,e=0 for all agents. In our model, the RPA sees
success rate of the other agents, for gildgpa/N. Most  &>0. Numerical data reveal a relationship between the suc-
strikingly is that for a wide range oNgps/N up to about cess rat®R ande of the formR=0.5-¢, if the RPA holds two
60%, the success rates of the RPAs and the rest of the popigentical strategies. The relationship was explained in terms
lation are basically insensitive tgps Over this range of of the dynamics through which the possible history bit
Ngrpa/ N, the success rate of the RPAs are much higher thastrings were visited. Results for# 0.5 were also presented
that of the other agents, as in the cas&lgf,=1. The results and discussed. The RPA has an enhanced success rate for
show that the system is still dominated by the crowd effect# 1, together with nonvanishing. For many RPAs in a
for Ngpa/ N< 0.6, and the RPAs achieve a higher success ratpopulation, it was found that the winning edge of the RPAs
by avoiding themselves from the crowd. Rdgpa/N=0.6, persists even for a population up to about 60% of RPAs for
the success rate of the RPAs decreases Migh/N and that gq=0.5.
of the other agents increases. It is expected that the fraction It is also interesting to explore if it is random participation
of RPA over which the RPAs outperform the other agentsalone that leads to the enhanced success rate. We, therefore,
may depend on the value of For q=0.5 discussed here, consider the case of a fraction of ageNtg,qon/ N Who par-
half of the RPAs participate in each turn on the averageticipate with probabilityq and decide the action randomly,
Thus the number of participating agents effectively reduces.e., they do not use the most recentoutcomes for deci-
Up to a fraction of 60%, the majority of the participating sions. Results are shown in Fig. 8 for comparison. The suc-

VIlI. CONCLUSION

VI. MANY RANDOMLY PARTICIPATING AGENTS
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cess rate of these random age(ust-dashed ling together use of the virtual points in decision making gives an addi-
with that of the other agent&solid line with symbols are  tional advantage for a further improved performance.
shown as a function df;;,q0r/ N- The results show that the

success rate of the RPAs ¢snsistently highethan that of

the random agents for all ratios in the population. We have ACKNOWLEDGMENTS
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