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We study a version of the minority game in which one agent is allowed to join the game in a random fashion.
It is shown that in the crowded regime, i.e., for small values of the memory sizem of the agents in the
population, the agent performs significantly well if she decides to participate the game randomly with a
probability q and she records the performance of her strategies only in the turns that she participates. The
information, characterized by a quantity called the inefficiency, embedded in the agent’s strategies performance
turns out to be very different from that of the other agents. Detailed numerical studies reveal a relationship
between the success rate of the agent and the inefficiency. The relationship can be understood analytically in
terms of the dynamics in which the various possible histories are being visited as the game proceeds. For a
finite fraction of randomly participating agents up to 60% of the population, it is found that the winning edge
of these agents persists.
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I. INTRODUCTION

The self-organization of an evolving population consist-
ing of agents competing for limited resource is an important
problem in the science of complex systems and has potential
applications in areas such as economics, biological, engi-
neering, and social sciences[1,2]. The bar-attendance prob-
lem proposed by Arthur[3,4], for example, constitutes a
typical setting of such system in which a population of
agents decide whether to go to a bar with limited seating
capacity for pleasure. The agents are informed of the atten-
dance in past weeks, and hence the agents share common
information, interact through their actions, and learn from
past experience. The problem can be simplified by consider-
ing binary games, either in the form of the minority game
(MG) [5] or in a binary-agent-resource game[6]. For low
resource level in which there are more losers than winners,
the minority game proposed by Challet and Zhang[5] repre-
sents a simple, yet nontrivial, model of competing popula-
tions.

The MG comprises an odd numberN of agents. At each
time step, the agents independently decide between option 0
and option 1. The winners are those who have chosen the
minority side. The agents learn and adapt by evaluating the
performance of their strategies, which map the global infor-
mation, i.e., records of the most recentm winning options, to
an action. A characteristic quantity in MG is the standard
deviation s of the number of agents making a particular
choice. This quantity reflects the performance of the popula-
tion as a whole in that a smalls implies on average more
winners per turn, and hence a higher success rate per turn per
agent. In MG,s exhibits a nonmonotonic dependence on the
memory sizem of the agents[7–9]. Whenm is small, there is
much overlap between the agents’ strategies. This crowd ef-
fect [6,10,11] leads to a larges, implying the number of
losers is high. This is the crowded or efficient phase of MG.
In the inefficient phase wherem is large,s is moderately
small and the agents perform better than deciding randomly.

Two important questions in MG and other multi-agent
based models are that(i) how one can possibly suppresss

and lead to a better performance of population as a whole
and (ii ) how an individual agent can possibly outperform
other agents without giving the agent too much extra capa-
bility. The former is clearly crucial from the point of view of
a governing body in improving a society’s performance, and
the latter is important from the viewpoint of the agents.
Much attention on the MG have been focused on the first
question, and several models with a suppresseds have been
proposed. The thermal model of MG[12], for example, al-
lows the agents to use strategies other than the best-scoring
one with a probability taking on the form of a Boltzmann
factor. It was found thats can be suppressed significantly in
the crowded phase, as the probabilistic usage of strategies
reduces the crowd effect[13]. Alternatively, the use of a
personal information[14] for decisions, e.g., based on each
agent’s record of her own actions, instead of a globally an-
nounced information provides another mechanism for sup-
pressing the crowd effect. In the evolutionary minority game
proposed by the present authors[15,16], the agents can adapt
their behavior by adjusting their probability of following a
strategy common to all agents. It was shown that the agents
would self-organize in such a way thats is small. Recently,
Sysi-Aho et al. [17] proposed a genetic algorithm for the
evolution of the agents and found that the fluctuations are
reduced. A common feature of these models is that the way
through which the agents adapt to past performance is sig-
nificantly altered, as compared with the MG.

In the present work, we focus on the question of how
individual agents may outperform their competitors. Our
model is motivated by realistic behavior of ordinary people.
Taking the situation of an agent buying or selling stocks, for
example. He may not enter the market to sell or buy stocks
every day. In addition, people tend to learn from their
hands-on experience, i.e., they tend to learn in the turns that
they actually participate. When they trade, they decide based
on updated information. Based on these common observa-
tions, we propose a model in which an agent or a fraction of
agents participate in the MG with a probabilityq per turn and
these agents register the performance of their strategiesonly
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in the turns that they participate. Strikingly, it is found that
the winning probability of these randomly participating
agents(henceforth referred to as RPA) are significantly en-
hanced, compared with the other agents who enter the MG
every turn.

The plan of the paper is as follows. In Sec. II, we intro-
duce our model. Results of extensive numerical studies for
one randomly participating agent withq=0.5 in a population
are presented in Sec. III. To explore the underlying physics
of the enhanced success rate of the agent, we study the sta-
tistics of the bit strings observed by the agent. Results on the
information observed, which is described by a quantity
called the inefficiency«, are presented in Sec. IV. It is found
that a nontrivial relationship exists between the success rate
of the agent in a run with« of that run. A theoretical analysis
on the observed relationship is also given in Sec. IV. In Sec.
V, we present numerical results forqÞ0.5 and generalize
our discussion on the relationship between the success rate
and « to arbitrary values ofq. Results for many RPAs in a
population are presented in Sec. VI, together with results
comparing the performance of RPAs and random agents who
participate and decide randomly. It is found that the RPAs,
with their scheme of assessing their strategies, consistently
perform better than random agents. Section VII gives a sum-
mary of the results.

II. THE MODEL

The basic MG[5] comprisesN agents competing to be in
a minority group at each time step. The only information
available to the agents is the history. The history is a bit
string of lengthm recording the minority option for the most
recentm time steps. There are a total of 2m possible history
bit strings. At the beginning of the game, each agent pickss
strategies, with repetition allowed. They make their decisions
based on their strategies. A strategy is a look up table with 2m

entries giving the predictions for all possible history bit
strings. Since each entry can either be 0 or 1, the whole
strategy pool contains 22m

strategies. Adaptation is built in by
allowing the agents to accumulate a merit(virtual) point for
each of her strategies as the game proceeds, with initial merit
point set to zero for all strategies. After each turn, one(vir-
tual) point is assigned to the strategies that would have pre-
dicted the winning minority option. At each turn, the agent
follows the prediction of her best-scoring strategy. A random
choice will be made for tied strategies.

In the present model, we consider a population ofN
agents in which there are a numberNRPA of randomly par-
ticipating agents. These agents are allowed to join the game
with a probabilityq, i.e., a RPA has a probabilityq of joining
the game in each turn and a probability of 1−q of staying out
of the game in a turn. The othersN−NRPAd agents, as in the
MG, participate every turn. For all agents, they decide in the
same way as in the MG when they participate, i.e., they
decide based on the best-scoring strategy that they hold at
the moment of decision and follow the prediction of the
strategy for the given most recentm winning options. In the
case that the two possible options are chosen by the same
number of agents, a case that may occur when RPAs are

present, the winning outcome is decided randomly.
The RPAs differ from the other agents in the following

way. Besides joining the game with probabilityq, they re-
ward the virtual points to the strategies that they hold only in
the turns that they participate. For the turns that a RPA de-
cides not to play, no virtual points are awarded to her strat-
egies, regardless of the outcome. These RPAs, therefore,
carry the typical features of ordinary people as described in
the preceding section. Forq=1 or NRPA=0, the present
model reduces to the MG.

III. RESULTS FOR ONE RANDOMLY PARTICIPATING
AGENT: q=0.5

We have performed extensive numerical simulations on
our model. First, we study the case of one RPA in a popula-
tion with q=0.5 in which the RPA is participating randomly,
e.g., deciding by tossing an unbiased coin. We consider sys-
tems ofN=101 and 301 agents, with each agent holdings
=2,3 strategies. The quantity of interest is the success rate,
which is the winning probability of the agents. For the RPA,
the success rateR is the ratio of the number of winning turns
to the number of turns she has actually participated.

Figure 1 shows the success rate of the RPA, together with
the success rate of the othersN−1d agents as a function of
the memory sizem for a system withN=101 agents fors
=2 [Fig. 1(a)] ands=3 [Fig. 1(b)]. For each value ofm, 50
independent runs with different initial random distributions
of strategies among the agents are carried out. The lines rep-
resent an average over the 50 runs. The most striking feature
of the results is that in the crowded phase wherem is small,
i.e., 232m,Ns, the RPA performssignificantly betterthan
the agents who participate every turn. The spread of results

FIG. 1. The success ratesR of the randomly participating agent
and the othersN−1d agents as a function ofm for N=101, q=0.5
and for (a) s=2 and(b) s=3. For each value ofm, the data corre-
spond to 50 independent realizations. The lines represent an average
over 50 runs. Form,mo, an RPA performs significantly better than
the other agents.
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in different runs is small and hence the enhanced success rate
of the RPA is an intrinsic feature. For higher values ofm in
the inefficient phase of the MG, the success rate of the RPA
is found to vary much from run to run, with an average
success rate lower than that of the other agents. The cross-
over from one behavior to another occurs at a valuemo,
which takes on a value close to the crossover from the
crowded phase to the inefficient phase in the basic MG. For
very high values ofm, the success rates of the RPA and the
rest of the population become identical. Similar behavior is
also found fors=3. Comparing Figs. 1(a) and 1(b), the en-
hanced success rate of the RPA over the other agents in the
range of smallm is more pronounced for higher values ofs,
as the population does not perform collectively well in the
basic MG ass increases for smallm.

To test whether the dependence of success rate of the RPA
on m is intrinsic, we carried out numerical simulation for a
system withN=301 for s=2,3. Thesuccess rate of a RPA,
averaged over 50 runs, is shown in Fig. 2, together with the
results forN=101 ands=2 for comparison. In general, the
average success rate depends only weakly onm for m,mo.
Note that the value ofmo depends on bothN ands. Around
mo, the RPA’s success rate drops and reaches a minimum
before increasing withm again form.mo.

Qualitatively, the enhanced winning of a RPA comes from
a successful escape in overadapting to the history created by
action of the other agents. In the MG, adaptation is achieved
by assessing the performance of each strategy as the game
proceeds. In the crowded phase, it has been shown that the
history bit string exhibits features with a periodicity of length
232m [18]. For small values ofm, agents in the population
adapt too effectively to the history. When a particular history
bit string occurs for the first time(or has occurred an even
number of times in previous turns), the agents basically de-
cide randomly. The outcome then leads to virtual points be-
ing awarded to those strategies which predicted the outcome
for that particular history bit string. In the next occurrence of

the same history bit string, the virtual points awarded now
lead to a crowd behavior[10] with a crowd of agents decid-
ing on the same outcome as in the last occurrence. However,
for smallm, this crowd tends to be too big to win, due to the
small strategy space and hence substantial overlap of strate-
gies among agents. Hence, the outcome is opposite to that in
the last occurrence of the same history bit string. Virtual
points are then awarded. For the next occurrence of the same
bit string, the situation is similar to that of the first occur-
rence. Since there are a total of 2m possible history bit
strings, it takes on average 232m time steps to sample all the
history bit strings twice, thus leading to the doubly periodic
features. In graph-theoretical language, this is related to the
path in the de Bruijn graph formed by the possible history bit
strings. A crowd-anticrowd theory[10,11] can be formulated
to explain the large standard deviations in the number of
agents making a particular decision over time for smallm in
terms of the crowd effect. A large fluctuation implies fewer
winners per turn and hence a low success rate. The success
rates shown in Fig. 1 for the other agents are strongly corre-
lated with s. For the RPA, the virtual merit points of her
strategies are different from that of the other agents, as she
rewards the strategies only in the turns she participates.
Therefore, the RPA does not fully adapt to the information
created by the other agents, and hence does not become part
of the crowd. This gives the RPA the ability to avoid over
adaptation in the crowded phase and an winning edge over
the other agents. We have checked that if the random agent
keeps record of the performance of her strategies for the
turns that she does not enter, the strategies still adapt to the
global history and no enhanced success rate results, even she
participates randomly.

IV. INEFFICIENCY AND SUCCESS RATE

A. Numerical results

To explore deeper into the underlying physics for the en-
hanced success rate of the RPA, we study the statistics of the
bit strings in the series consisting of the outcomes for the
turns that the RPA has participated. This series of bit strings
corresponds to the one with which the strategies of the RPA
are assessed for their performance. To quantify our discus-
sion, we focus on the behavior in the range of smallm and
look at the probability of a winning outcome of 1 following
a given bit string ofm bits. We define the inefficiency«
[8,19,20] as follows:

« =
1

2mo
i=1

2m

uP„1uismd… − 1/2u, s1d

where the sum is over all 2m possiblem-bit strings and
P(1uismd) is the conditional probability that a givenm-bit
string labeled byi is followed by an outcome 1 in a long
series of the RPA bit strings in a particular realization of the
modelf21g. The inefficiency« measures the information left
in the history bit strings that the RPA uses to assess her
strategies. Note that for the MG in the crowded phase,«=0
f7g, indicating that there is no information left in the history
bit strings.

FIG. 2. The success rateR of the randomly participating agent
as a function ofm for three different systems:q=0.5, N=101 with
s=2 and for N=301 with s=2,3. Each data point represents an
average over 50 independent realizations.
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Each realization(run) of the model gives one value of«.
Figure 3 shows the distribution of the values of« over
10 000 independent runs with different initial conditions for
m=2 andm=4 (inset) andq=0.5. Strikingly,«Þ0 in general
for the bit strings specific to the RPA. The distribution shows
a peak at finite« with the most probable value of« increases
with m. We have checked that the inefficiency of the bit
string in a run used by the other agents takes on a value very
close to zero.

From Figs. 1 and 3, there is a spread of success rate for
different runs that is associated with a spread in the values of
«. For each run of our model, there is a success rateR and a
value of «. It is therefore interesting to explore the correla-
tion, if any, betweenR and« in a run. Figure 4 shows a plot
of the success rateR against the inefficiency« for a system
with N=101, s=2, m=2, and a participating probabilityq
=0.5 for the RPA. Each data point on the plot represents the
success rate and the value of inefficiency in a run. There are
10 000 data points on the plot, corresponding to 10 000 in-
dependent runs. From the scattered data points, there
emergesa straight line consisting of a fraction of,0.06 of
the total number of runs[22]. For these runs, the success rate
R is related to the inefficiency« by R=0.5−«. The inset of
Fig. 4 shows the results form=4 in which the RPA holds two
identical strategies, the implication of which will be dis-
cussed in the following section.

B. Theoretical analysis

The emergence of the relationship between the success
rate and the inefficiency can be understood by invoking the
doubly periodic feature in MG, as described in the last sec-
tion. Let teven

m stodd
m d be a set consisting of the turns in a

history series that a particular historym occurred an even
(odd) number of times from the beginning of the game just
before the moment of decision with historym. Let Pstuteven

m d
fPstutodd

m dg be the probability that the outcome ist st=0,1d

at a turnt that belongs toteven
m stodd

m d. Double-periodicity im-
plies Pstuteven

m d= 1
2 and Pstutodd

m d=1−t. To proceed, we note
that the straight line in main panel of Fig. 4 consists of about
600 data points out of a total of 10 000 runs. This amounts to
a fraction of 1/s22m

d=1/16 form=2, which is the fraction of
agents holding two identical strategies in a population.
Therefore, the runs on the straight line corresponds to the
cases in which the RPA picks two identical strategies, i.e.,
effectively one strategy. This is further confirmed numeri-
cally in the inset of Fig. 4 in a game ofm=4 in which the
RPA is restricted to have two identical strategies. We further
note that it is the RPA that generates the inefficiency«. This
is related to the fact that, unlike an outsider who observes but
not participates, an agent’s action affects the outcome, and
hence her own success rate. This is the agent’s “market im-
pact.” Consider, for example, the case that the othersN−1d
agents are equally split between the two options. The out-
come will always be the opposite of that of the remaining
agent. For a RPA, however, this market impact effect is im-
portant only for the turnstP teven

m . For tP todd
m , the difference

in the number of agents taking the two options is so large for
a single RPA to affect the outcome.

Consider a RPA with two identical strategies. If the agent
decides to enter the game in a turntP teven

m there is a small
probability P in these turns that the other agents are evenly
divided between option 0 and option 1. In this case, the
outcome is determined by the strategy of the RPA. If her
strategy predicts optiont, the outcome will bes1−td and the
agent will definitely lose. In the next occurrence of the his-
tory m, the outcome must bet due to the doubly periodic
feature. As a result, the RPA will definitely win if she decides
to participate. The success rate of the agent is then given by
[23]

FIG. 3. The probability density of inefficiency« for N=101,
m=2, s=2, andq=0.5. The inset shows the probability distribution
of « for m=4. Each distribution is obtained from the results of
10 000 independent runs. FIG. 4. The success rateR against« in the bit string which the

RPA uses to assess the performance of her strategy. The parameters
areN=101, s=2, m=2, andq=0.5 for the RPA. There are 10 000
data points on the plot corresponding to 10 000 independent runs.
Note that the data points lead to the emergence of a line. The inset
shows the results form=4 in which the RPA holds two identical
strategies.
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R= s1 − P − qPd 3 1/2 +P 3 0 + qP3 1 =
1

2
−

1 − q

2
P,

s2d

where the last two terms in the first line correspond to the
two cases discussed above, and the factors1−P−qPd is the
probability of occurrence of cases other than those included
in the last two terms.

The inefficiency« can be calculated using Eq.(1) in a
similar manner. There is a probabilityP in the turns that the
RPA participates that the RPA must lose fortP teven

m , with an
outcomes1−td. If the agent participates in the next occur-
rence of that particular historym, the outcome will bet.
Consequently, the probability for the RPA to observe an out-
comet is

Pt = s1 − P − qPd 3 1/2 +P 3 0 + qP3 1 =
1

2
−

1 − q

2
P,

s3d

wheret takes on either 0 or 1. It follows from Eq.s1d that

« =
1

2mo
m=1

2m

uPs1utmd − 1/2u =
1 − q

2
P. s4d

Combining Eqs.s2d and s4d, we have

R=
1

2
− «, s5d

as observed numerically for runs in which the RPA holds
two identical strategies.

V. ONE RANDOMLY PARTICIPATING AGENT: qÅ0.5

Figure 5 shows the results of the success rate, averaged
over 50 runs for each data point, of a RPA as a function ofm

for a system withN=101, s=2 for different values of par-
ticipation probabilityq sq=0.3,0.5,0.8d. For q=1, the suc-
cess rate of the RPA is the same as that of the other agents
and the results are identical to that of the MG. It is noted that
for small values ofm, i.e., in the crowded phase, the en-
hanced success rates forqÞ1 take on similar values, all of
which are significantly higher than that of the other agents
(reasonably represented by theq=1 results). For values ofm
in the inefficient phase of the MG, a higher participation
probability gives a higher success rate. However the success
rate is still lower than that of the other agents.

The argument in the preceding section can be readily gen-
eralized to arbitrary values ofqÞ1. In this case, the success
rate of a RPA holding repeated strategies is given by

Rsqd =
1

2
− «sqd, s6d

i.e., taking on the same form as Eq.s5d. The inefficiency
«sqd, similar to Eq.s4d, is given by

«sqd =
1 − q

2
Psqd, s7d

wherePsqd=Tcsqd /T with Tcsqd being the number of turns in
a run of T turns sT@1d that the othersN−1d agents are
evenly split between the two decisionsand the RPA partici-
pates. The result suggests that for different values ofq, a plot
of the success rateR against«sqd will have data points clus-
tered on a straight line with slope −1. This is indeed the case
as shown for data obtained with five different values ofq in
Fig. 6. For each value ofq, 500 independent runs are carried
out, and there are 2500 data points on the plot. The data
clearly exhibit the behavior suggested by Eq.s6d.

It is interesting to explore the distribution of inefficiency
for values ofq away fromq=1. Figure 7 shows the prob-
ability density of inefficiency for four different values ofq

FIG. 5. The average success rate of the RPA as a function ofm
for a system with N=101, s=2 for different values of q
=0.3,0.5,0.8,1. Each data point is an average over 50 independent
runs. The lines are guide to eye.

FIG. 6. The success rateR against« with N=101,s=2, andm
=2 for five different values ofq=0.3,0.4,0.5,0.6,0.7. The RPA
holds two identical strategies. For each value ofq (labeled by a
symbol), 500 independent runs are carried out. The solid line rep-
resents the relationshipR=0.5−«.
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sq=0.3,0.5,0.7,0.9d in a system withN=101, m=4, ands
=2. For each value ofq, the distribution is obtained from
1000 runs. It should be pointed out that the distribution for
the basic MGsq=1d is sharply peaked near«=0. As q takes
on values gradually away from unity, the distribution of in-
efficiency gradually spreads wider with the most probable
value of the inefficiency increases as the deviation ofq from
unity increases. Therefore, the enhanced success rate is ac-
companied by a nonvanishing inefficiency in the range of
small m.

VI. MANY RANDOMLY PARTICIPATING AGENTS

It is important to investigate whether the enhanced suc-
cess rate of a RPA persists when more RPAs are present in a
population. Figure 8 shows the averaged success rate as a
function of the fraction,NRPA/N, of RPAs in a population
with N=101, s=2, m=2, andq=0.5. The dashed line gives
the success rate of the RPAs and the solid line gives the
success rate of the other agents, for givenNRPA/N. Most
strikingly is that for a wide range ofNRPA/N up to about
60%, the success rates of the RPAs and the rest of the popu-
lation are basically insensitive toNRPA. Over this range of
NRPA/N, the success rate of the RPAs are much higher than
that of the other agents, as in the case ofNRPA=1. The results
show that the system is still dominated by the crowd effect
for NRPA/N,0.6, and the RPAs achieve a higher success rate
by avoiding themselves from the crowd. ForNRPA/Nù0.6,
the success rate of the RPAs decreases withNRPA/N and that
of the other agents increases. It is expected that the fraction
of RPA over which the RPAs outperform the other agents
may depend on the value ofq. For q=0.5 discussed here,
half of the RPAs participate in each turn on the average.
Thus the number of participating agents effectively reduces.
Up to a fraction of 60%, the majority of the participating

agents in a turn are the other agents. Thus, the system is still
influenced by the actions of the other agents.

VII. CONCLUSION

We considered the success rate of a number of randomly
participating agents in a population competing for limited
resource. The RPAs participate with a probabilityq and they
assess the performance of their strategies only in the turns
that they participate. Extensive numerical calculations were
carried out. For one RPA in a population, it was found the
RPA has a higher success rate than the other agents in the
crowded phase. Rewarding the strategies only in the turns of
participation avoids the RPA from overadaptation to the out-
comes produced by the actions of the other agents. The hid-
den information in the bit strings that a RPA used to reward
her strategies was analyzed in terms of the inefficiency«. In
basic MG,«=0 for all agents. In our model, the RPA sees
«.0. Numerical data reveal a relationship between the suc-
cess rateR and« of the formR=0.5−«, if the RPA holds two
identical strategies. The relationship was explained in terms
of the dynamics through which the possible history bit
strings were visited. Results forqÞ0.5 were also presented
and discussed. The RPA has an enhanced success rate forq
Þ1, together with nonvanishing«. For many RPAs in a
population, it was found that the winning edge of the RPAs
persists even for a population up to about 60% of RPAs for
q=0.5.

It is also interesting to explore if it is random participation
alone that leads to the enhanced success rate. We, therefore,
consider the case of a fraction of agentsNrandom/N who par-
ticipate with probabilityq and decide the action randomly,
i.e., they do not use the most recentm outcomes for deci-
sions. Results are shown in Fig. 8 for comparison. The suc-

FIG. 7. The probability density of inefficiency« for the RPA in
a system withN=101, s=2, m=2 for four different values ofq
=0.3,0.5,0.7,0.9. Other parameters areN=101, m=4, and s=2.
For each value ofq, the distribution is obtained from 1000 indepen-
dent runs.

FIG. 8. The average success rate as a function of the ratio
NRPA/N of RPAs in the population withN=101, s=2, m=2, and
q=0.5. A pair of lines show the success rate of the RPAs(dashed
line) and the other agents(solid lines). For comparison, another pair
of lines show the success rate of random agents(dot-dashed line)
and the other agents(solid line with symbols) as a function of the
ratio Nrandom/N. Each data point represents an average over 50
independent realizations.
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cess rate of these random agents(dot-dashed line), together
with that of the other agents(solid line with symbols) are
shown as a function ofNrandom/N. The results show that the
success rate of the RPAs isconsistently higherthan that of
the random agents for all ratios in the population. We have
also checked that the RPAs perform better than random
agents for all values ofm. Thus, while random participating
does lead to a better performance by avoiding the crowd, the
scheme of rewarding virtual points to the RPAs and making

use of the virtual points in decision making gives an addi-
tional advantage for a further improved performance.
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